

SAN FRANCISCO HANGE THE WORLD FROM HE

Why Math?

- Actually we will start with arithmetic.
- This domain of education is one of the most challenging in the educational world
- For blind students, math is too often a dead end
- Failure in arithmetic leads to failure in higher math, which restricts blind students from careers in STEM disciplines

- The longer we wait to educate students with visual impairments, the better the chance that we will have a lower level of success.
- Failure at this level is exacerbated by two other issues.
- These two issues have been documented in the U.S. education system – especially true in math and science

Now for a Case-in-Point UNIVERSITY OF SAN FRANCISCO

- The results tend to indicate that multidimensional information can be transferred via touch as well as vision
- The systems we will examine uses this this premise as its key feature
- <u>Bottom line</u>: we will be able to give visually impaired students a two dimensional view of arithmetic and math

- Traditional Braille-like systems only offer a single dimensional view of math.
- Any "second dimensional" view of math is achieved through special codes that help the student in building a two dimensional mental model from a one dimensional presentation tool

Monday, February 11, 13	University of San Francisco	Slide Number 21	Monday, February 11, 13 University of San Francisco Slide Number 22
Case-ir	n-Point	UNIVERSITY OF SAN FRANCISCO	Case-in-Point
The Equation MathML Representation LaTeX Representation Nemeth Representation	$c = \sqrt{a^2 + b^2}$ <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		 On a much simpler level, the problem shown in the slide above is also a problem in simple arithmetic. 1234 + 899 versus 1234 + 899
Monday, February 11, 13	University of San Francisco	Slide Number 23	Monday, February 11, 13 University of San Francisco Slide Number 24

Case-in-Point

- Our initial usability studies clearly indicated that young blind students
 - Regularly reduced their problem solving time by an average factor of two (half the time)
 - Reduced their error rates by similar percentages
 - None of our subjects had ever used the system before their participation in the study
 - These findings should improve with practice

```
Case-in-Point
                                                                                                            SAN FRANCISCO
                                                                                                             CHANGE THE WORLD FROM HER
Slide Number 25
                                         Monday, February 11, 13
                                                                      University of San Francisco
                                                                                                          Slide Number 26
```

```
Monday, February 11, 13
```

```
University of San Francisco
```

```
UNIVERSITY OF
SAN FRANCISCO
```

Case-in-Point

- Refreshable Braille devices, on the other hand, are basically single dimensional
- Refreshable multi-dimensional Braille devices are becoming available, but at VERY high prices
- The HyperBraille system with a resolution of 120x60 refreshable dots costs in the tens-of-thousands of Euros

Monday, February 11, 13 University of San Francisco

Case-in-Point

- The AutOMathic Blocks system supports 117 traditional Braille characters on 2.54cm x 2.54cm blocks.
- Small grid compared to HyperBraille, but more than adequate in learning arithmetic, and, at a cost of 200 dollars
- The system uses Braille tagged blocks that are placed on the workspace

Monday, February 11, 13

University of San Francisco

Slide Number 29

- In this system, learning problems can be laid out in two dimensions, allowing the student to use his/her finger to scan the exercise as a sighted person would see it
- In a recent study (as reported above) of blind students solving problems in 2dimensions showed that the 2-D presentation decreased solution time by a factor of two

Case-in-Point

- The student is monitored and tutoring is always available from
 - The attached computer speech output in virtually any spoken language (table driven)
 - The observing teacher
 - The observing parent
- The computer also presents an image of the student's work with extra information to help the teacher or parent

Monday, February 11, 13

Conclusions

- If interface able with another tool, make sure that the connectivity is also consistent with ULD principles
- The device we defined and specified is a reasonable first step in building a ULD consistent device
- The act of building a tool to support our principles is an exhaustive effort

- ULD principles require an interdisciplinary effort whether the product is a learning tool or a new curriculum
- Also, keep in mind that ULD principles are used in project design, and absolute adherence is rarely possible

Monday, February 11, 13	University of San Francisco	Slide Number 45	Monday, February 11, 13	University of San Francisco	Slide Number	46
Questions	s and comments P	Iease				
Monday, February 11, 13	University of San Francisco	Slide Number 47				